reparaciones de pc

Si buscas hosting web, dominios web, correos empresariales o crear páginas web gratis, ingresa a PaginaMX
Por otro lado, si buscas crear códigos qr online ingresa al Creador de Códigos QR más potente que existe


Reparar un Monitor de Ordenador por Menos de 1 euro

Condensadores hinchados y deformados, en mal estado, fáciles de cambiar

Condensadores hinchados y deformados, en mal estado, fáciles de cambiar

Al parecer, el 90% de las averías de las pantallas planas de ordenador es por culpa de unos simples condensadores que se cambian fácilmente con un destornillador y un soldador… por menos de 1 euro, y en 10 minutos. Sin embargo, nos consta que en muchas tiendas dicen que no merece la pena arreglarlos, sencillamente porque no lo saben, o porque ganan más vendiendo una nueva pantalla. Para saber si un condensador está roto basta con mirarlo y ver si está deformado (hinchado) o si se le ha salido algún líquido. Os dejamos un vídeo que explica cómo hacer el cambio (cuidado con la polaridad). La técnica sirve para otros aparatos electrónicos como TDT, placas base (si tu ordenador se bloquea y hace cosas raras), pantallas de TV, lectores DVD, DIVX…

En una economía sostenible es vital que la sociedad asuma como prioritario el objetivo de Reducir al máximo la generación de desechos: El concepto de «basura» debe desaparecer. En particular los desechos tecnológicos están creciendo mucho y, mucha gente aún no sabe que eso no deben tirarse a la basura, sino a un «punto limpio» (pregunta a tus autoridades locales dónde depositar este tipo de residuos y exígelo). Entonces, además de las típicas Tres Erres, podemos meter una cuarta erre: REPARAR. Otros hablan de 5 erres (poniendo delante a Respetar y Repensar), o de otras 5 erres distintas (las 3 clásicas más Rechazar lo negativo y Reclamar).

NOTA: Al coste total hay que sumar, si no se tiene, el coste del soldador y del estaño, pero tal vez podamos pedirlo prestado. En un futuro sostenible deberíamos prestar y pedir prestadas las herramientas, antes que comprar algo para poco uso.Diagrama en bloques de una fuente SMPS tradicional (pulsa en la imagen para ampliarla)

Los monitores LCD, TFT o plasma utilizan el mismo principio de funcionamiento básico, con la única diferencia que no traen el circuito de desmagnetización con el PTC. El resto es la misma fuente de alimentación, donde cambian los aspectos físicos de los materiales fundamentales que intervienen en su construcción, pero el funcionamiento y diseño trabajan bajo los mismos principios conceptuales.

Se ve interesante ¿verdad? ¡Espera! No cierres la página ni cambies de artículo. Al final de la nota vas a darte cuenta que todo es muy sencillo y por fin entenderás el funcionamiento de las fuentes de alimentación. El único secreto aquí es que el editor de NeoTeo (un servidor), logre hacer amena y clara la explicación para que no caigas en confusiones que te hagan abandonar la lectura rápidamente. Allí vamos.

La conmutación está basada en el cambio periódico de estados lógicos de tensión La conmutación está basada en el cambio periódico de estados lógicos de tensión

¿Cómo es esto de la conmutación?
La conmutación se produce gracias al cambio de estado cíclico y constante de una determinada tensión a la salida del oscilador. Es decir, podemos poner el ejemplo de un voltaje que varíe continuamente entre 0 y 5 Volts. Durante un tiempo controlado, la tensión de activación estará en cero, y en otro tiempo equivalente, estará en cinco volts, y así repitiéndose en el tiempo. Esto significa que está oscilando entre los valores ejemplificados: 0-5-0-5-0-5-0-……

Si en el ejemplo que hemos adoptado realizamos la conexión apropiada a T1, haremos que dicho transistor pase de la saturación (conducción) al corte (abierto), coincidiendo con las variaciones a la salida del oscilador. El transistor estará conmutando entre dos estados bien definidos y opuestos: saturación y corte. Es decir, T1 actuará como una llave (switch) que conecta y desconecta el bobinado primario del transformador, al ritmo que le imponga el oscilador. Un equivalente sería así:

Graficación de la conmutación con llave y transistor Graficación de la conmutación con llave y transistor

Al provocarse la conducción por el primario del transformador, circulará una corriente importante a través de él, que inducirá otra corriente proporcional en su secundario. Luego ésta será rectificada, filtrada y utilizada por el equipo. Debes recordar que en la entrada del transformador existen 311 Volts de corriente continua y pulsante, apenas filtrada por un electrolítico de 100 a 200 microfaradios, por lo que la corriente circulante por el conjunto primario + transistor será muy importante.

¿Qué ocurre con la potencia disipada, con el calor que esto genera?
Al cerrar la llave, que sería lo mismo que pasar el transistor a un estado de conducción, la diferencia de potencial o tensión, o caída de tensión en sus extremos conectados (Colector y Emisor) será igual a cero, porque se supone que se provoca un estado de conducción plena, sin resistencia interna. Al no haber resistencia al paso de la corriente, no hay caída de tensión presente (V = 0). Según la fórmula utilizada para calcular potencia obtenemos que: P (potencia) = V (tensión) * I (corriente)

Si V = 0, P también será igual a 0. Lo mismo ocurre en el momento del corte del transistor (o llave). Si está abierto, I (la corriente) será igual a cero, por lo que P también resultará igual a cero. Es decir, si el pulso de conmutación es correctamente cuadrado, con flancos ascendentes y descendentes rectos, no debiera haber nunca disipación de calor en el transistor de conmutación.

Formas de onda sobre el transistor de conmutación Formas de onda sobre el transistor de conmutación

Los problemas de las fuentes conmutadas comienzan cuando el impulso que gobierna al transistor final de potencia, no logra tener la forma correcta. Si el transistor no pasa del corte a la saturación en un tiempo considerado prácticamente cero o nulo, habrá momentos en que en su interior no habrá resistencia cero, no habrá conducción total. Y si esto no ocurre, tendremos disipación de potencia ya que V no será igual a cero; tendremos generación y acumulación gradual de calor.
A pesar de venir montados sobre generosos disipadores de aluminio para ayudar a irradiar el calor emitido, a veces éstos no alcanzan y los transistores terminan rompiéndose, o los circuitos integrados que los incluyen dejan de funcionar.

Controlando la fuente.
El oscilador principal recibe algunas señales de control muy importantes.

1) La realimentación principal es una referencia de tensión que le brinda un optoacoplador desde la salida en el secundario. Este dispositivo está conectado de manera que toma de la tensión útil de salida una pequeña “muestra”, que será equivalente a la tensión resultante. A veces en el lado primario, a veces en el secundario, se la compara con una referencia fija, y de la diferencia entre ambas surge lo que se conoce como tensión de error. Es con ella que se informa al control del oscilador si el voltaje entregado en el secundario es el correcto o si debe aumentar o disminuir su régimen de trabajo para ajustarse a los valores que la referencia fija le indica. De este modo se genera un lazo cerrado o Loop que continuamente está sensando – comparando – ajustando. Se utiliza un acoplador óptico para este fin, con el objeto de preservar una aislación galvánica a ambos lados del transformador de conmutación o chopper (como también se le suele llamar), manteniendo dos lados bien definidos, separados y aislados: donde hay conexión a la red domiciliaria (lado HOT) y donde no la hay (lado COLD).

2) La segunda señal importante es extraída desde uno de los bobinados del mismo transformador y se utiliza en el control del oscilador para “mantenerlo informado” de posibles consumos anormales de corriente que pudieran haber tanto de un lado como del otro (primario o secundario) y evitar así que el sistema se destruya por altas corrientes de consumo requeridas.

3) Una tercera información que llega al oscilador principal es desde el circuito encargado de sensar la temperatura que el transistor de salida o el circuito integrado en su conjunto posee al momento de trabajar. Una distorsión brusca de temperatura podría desembocar en una rotura total de componentes; esta porción del circuito ayuda a evitar que eso suceda.
Todas estas informaciones llegan al circuito oscilador pero, ¿cómo lo controlan?

Zona de control de una fuente de un monitor Zona de control de una fuente de un monitor

Existen dos formas clásicas de hacerlo: una es variando la frecuencia de trabajo del oscilador, y la otra es variándole el ciclo de trabajo a la frecuencia generada por él. En el caso de variar la frecuencia de oscilación, lo que estará sucediendo es que el transistor oficiante de switch conmutará a mayor velocidad, incrementando la tensión en el secundario del transformador chopper. Por otro lado, variar el ciclo de trabajo significa que el oscilador haga variar los tiempos de saturación y corte del transistor. De esta forma se aplica la técnica que se conoce como PWM (Pulse Width Modulation), o su equivalente en castellano: Modulación por Ancho de Pulso. Es decir, hacen durar más tiempo, o menos tiempo, que el transistor esté al corte o a la saturación. Las dos técnicas son empleadas (a veces en simultáneo) para regular la tensión de salida de una fuente conmutada o switching.

¿Has podido entender? ¡Es muy fácil! ¡La fuente tiene un oscilador libre controlado por realimentaciones de circuitos que están atentos en forma permanente a cualquier malfuncionamiento para corregirlo automáticamente o para detenerlo sin que nada se rompa! Pero igual se rompe, y ahora empezarás a ver por qué.

Aplicando la teoría en la reparación.
Para el caso de los Monitores de Ordenadores que utilizan CRT (al igual que en los TV) ya habíamos analizado en el artículo señalado algunas posibilidades iniciales de rotura que, excluyendo a las originadas por el PTC, le caben a cualquier fuente de alimentación. Debes repasarlas para descartar problemas antes de comenzar con esta segunda etapa, más compleja por cierto.

El boom de llenar una casa con electrodomésticos que al momento de diseñarse la instalación eléctrica no estaban previstos ni por asomo, puede traerte serios problemas que no imaginas en absoluto. La sección de los cables que forman la instalación tal vez hayan sido especificados  para una determinada corriente y consumo eléctrico, y ahora tu le has agregado microondas, TV más grande (29” ó 34”), cadena de sonido, más iluminación, secador de cabello, lavarropas automático, lavavajillas, aire acondicionado y, por supuesto, tu ordenador.
Los cables, al no estar preparados para tanto consumo de corriente, provocan caídas de tensiones tan grandes que se notan en la iluminación cuando un electrodoméstico se enciende, provocando altibajos en la tensión de red “dentro del domicilio”. Hay situaciones extremas que llevan a provocar esto:

Capacitor electrolítico destruído por bruscas variaciones en la tensión de red Capacitor electrolítico destruído por bruscas variaciones en la tensión de red

Una caída brusca de tensión de línea y su posterior intento de recuperación provocan la virtual y literal explosión del capacitor electrolítico de entrada de línea y de la resistencia fusistora (tal es su nombre en la ámbito de los services) de bajo valor, 3,9 Ohms, como se ve en la parte izquierda de la imagen. Este defecto suele a veces ser lo suficientemente grave como para involucrar a alguno de los diodos rectificadores de entrada. Recuerda que debes cambiar los cuatro y no sólo los que encuentres averiados. En el capítulo anterior te hemos enseñado a medirlos.

Los capacitores electrolíticos.
Otro problema grave que poseen las fuentes de alimentación es aquel causado por los capacitores electrolíticos y su exposición al calor. Antes te contamos que en toda fuente de alimentación el diseñador busca obtener los menores valores posibles de radiación de calor, pero la práctica es muy distinta a las frescas hojas de diseño. Los componentes tienen tolerancias que provocan desvíos del funcionamiento ideal, por lo que la temperatura es un actor de importancia y presencia constante dentro del funcionamiento de una fuente, tanto al momento en que se conecta el equipo (y todo está frío) como cuando éste ya lleva un rato de funcionamiento.
El calor va trabajando sin prisa pero sin pausa sobre los capacitores, y termina “secando” el electrolito que impregna el material aislante que se encuentra entre sus placas. El resultado es la pérdida de sus parámetros principales, provocando un malfuncionamiento que generalmente deriva en roturas importantes de la fuente de alimentación.

Capacitores electrolíticos defectuosos Capacitores electrolíticos defectuosos

Por lo tanto, el consejo es que cada cierto periodo prudencial de tiempo controles visualmente los capacitores electrolíticos que intervienen en el funcionamiento de la fuente. Notarás, si los observas bien, que se encuentran con su cubierta plástica arrugada y, en ocasiones, rota. También encontrarás derrame de electrolito sobre la placa en cercanías de muchos capacitores electrolíticos pertenecientes a la fuente. ¿Cuánto es un tiempo prudencial? Cada dos a tres años, no antes ni mucho después.
Cambia todos los del lado primario sin pensarlo ni dudarlo. Ten cuidado con su orientación (polarización o ubicación) y lograrás prolongar la vida del artículo por varios años más. Hay algunos que se ven impecables, como si fueran nuevos. Cámbialos igual. El 60% de los problemas de rotura en una fuente de alimentación son producto de los capacitores electrolíticos que se envejecen o secan prematuramente por motivos de su exposición al calor reinante en el sector. No lo dudes, cámbialos a todos los del lado primario. Ello te garantizará el funcionamiento más parecido al que el diseñador calculó. Ningún otro componente se suele degradar con la temperatura natural del lugar, sólo los capacitores electrolíticos.

A continuación te hablaremos sobre los circuitos integrados utilizados en las fuentes de alimentación y sobre la tecnología que hoy se aplica en los monitores LCD. ¡Sigue leyendo!

© 2024 reparaciones de pc